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AN I N V A R I A N T  S O L U T I O N  OF GAS D Y N A M I C S  E Q U A T I O N S  

S. V. Golovin UDC 533 

The problem of an invariant solution of gas dynamics equations is considered. It was shown in [1] that in 
the case of an arbitrary equation of state, these equations admit the Gn group. Below, we study an invariant 
solution for a series of three-parameter subgroups from G n  containing two arbitrary constants (subalgebra 
3.15 from Table 6 [1]) that exert an influence on the solution form. A nonsingular invariant solution exists 
when the constants do not vanish simultaneously. The solution is expressed by finite formulas. In the case 
where both constants are equal to zero, one can obtain a partially invariant solution with invariance defects 1 
or 2. The study of the partially invariant solution of defect 1 and rank 2 shows that it belongs to regular 
solutions [2] and is reduced to an invariant solution with respect to the two-parameter group involved in the 
initial three-parameter group. This solution is described by a closed system of equations with two independent 
variables. A group classification with respect to the equation of state is performed for this system. 

1. P r e l i m i n a r y  R e m a r k s .  We consider the equations of gas dynamics 

D u + p - l V p = O ,  D p + p d i v u = O ,  D S = O ,  p =  f ( p , S ) .  (1.1) 

Here D = Ot + u .  V ,  V = (0~, Oy, Oz), u = (u, v, w) is the velocity vector, p is the density, p is the pressure, 
and S is the entropy. All functions depend on time t and on the coordinates x = (x, y, z); f is a given function. 

It is known (for instance, from [1]) that in the case of an arbitrary f ,  system (1.1) admits the eleven- 
parameter transformation group Gn  of the base space Rg(t, x, u, p, S). In this paper, we study an invariant 
solution constructed for a series of three-parameter subgroups H(a,  fl) C G n  with the Lie algebra generated 
by the operators 

Hl = Oz + tO~ + O~, g2  = oy - tOz - Ow, Ha = aOz + #(tc3,: + O,,) + yO, - zOu + vO,r - wO~, (1.2) 

where a and/3 are arbitrary material parameters; note that subalgebras that are dissimilar with respect to the 
action of the groups of internal automorphisms Gl1 correspond to different values of a and ft. Therefore, the 
solutions corresponding to different a and/3 differ significantly, i.e., cannot be transformed into one another 
by means of transformations from Gll. 

It should be noted that the factor-system E / H  always admits the normalizer H in G, i.e., the 
transformations admitted by the factor-system are partially known. In this problem, the Lie algebra generated 
by the operators 

Y1 = Oz, Y 2 - - t O z + O u ,  g3=oz+tOy ' -FOv ,  r 4 ~ - O y - t O z - O w ,  

Y5 = - zOy + - wOv 

corresponds to the normalizer H(a,  j3) in Gxl. These transformations make it possible to simplify the form of 
the exact solution. 

2. C o n d i t i o n s  of  Ex i s t ence  of  an Inva r i an t  H - S o l u t i o n .  One should primarily verify the 
existence conditions of a nonsingular invariant H-solution. For this purpose, we proceed as follows. Denote 
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X = (t, z, y, z) and Y = (u, v, w, p, S). A tangential mapping 4 of the group H(a , /3 )  is determined from Eqs. 
(1.2). Divide the general operator 4" O of algebra (1.2) into parts so that  

4 " O = ~ ' O x  + o ' O r .  

Let r . (4  ) be the general rank of the tangential mapping 4- Then,  for Eqs. (1.1) to have a nonsingular 
mvariant H-solution, the relations 

r,(~) = r , (4  ) ~< n (2.1) 

should hold. 
In our case, n = 4 and r , (4)  = 3, while 

3, a2 +/32 # 0, 
r , ( ~ ) =  2, a s + / 3 5 = 0 .  

Thus, condition (2.1) is satisfied only when a s +/32 r 0, i.e., when a 2 +/32 = 0, it is impossible to construct 
a nonsingular invariant H-solution. 

3. T h e  Case  o~ 2 + / 3  2 r 0. We construct an invariant solution with respect to the group H(a,/3),  
whose solution algorithm is well known from [3]. A universal invariant of the group H(a, /3)  can be selected 
as follows: 

j = ( t , / 3x  - (a  + / 3 t ) ~ ,  u ,  x - ( a  + / 3 t )  ~ ,  p, s ) .  

Here the new functions U and r are determined from the relations y - t v + w  = U cos ~ and z - v - t w  = U sin ~. 
The rank of the solution is a = n - r , ( ( )  = 1; therefore, the invariant H(a,/3)-solution is represented 

a s  

#x - b(t) tu + z - u ( t ) ( t  cos r + sin ~) 
a + / 3 t  ' t2+l ' 

t z - y - U ( t ) ( t s i n r 1 6 2  S = S ( t ) ,  p = p ( t ) ,  r  z - d ( t )  (3.1) 
w = t 2 + 1 ' a +  fl-----'~" 

One can see from (3.1) that  the density in the required solution depends only on time, i.e., it describes 
a particular case of barochronic motions [4]. Substi tut ing the solution representation into system (1.1), we 
obtain the factor-system E / H  of ordinary differential equations: 

bt = O, Ut = O, dt = / 3 d -  b ( f l  2t-~1) a+#-----~' Pt+P a+/3--------~+ = 0 ,  St=O. (3.2) 

Solving system (3.2) and using the representation (3.1), we find an explicit form of the invariant solution 
of gas dynamics equations with respect to the group H(a, /3):  

/3z - Cl ty + z - c3(t cos q~ + sin ~) t z  - y - c3 (t sin ~ - cos q~) 
a + / 3 t  ' t 2 + 1 t 2 + 1 

{ ~ - (~ + #~)~2 - c~/# 
~ =  ~ + # t  , # # 0 ,  

x + (Cl /~ )  t - c2,  /3 = 0, 
ot 

Po S = const .  
P = (t2 + 11(~ + / 3 t ) '  

(3.3) 

The integration constants Ci ( i  ---- 1, 2, and 3) are arbitrary. Generally speaking, the solution is sought 
up to transformations admi t ted  by the basic equations (1.1). Therefore, to simplify (3.3), one can use the 
above transformations from the normalizer H(a,/3) in Gin. Thus, any solution of (3.3) is brought to a standard 
form, in which cl and c2 are equal to zero. Indeed, these constants are "annihilated" by shear transformations 
and Galilean translation along the X axis. Moreover, considering solution (3.3) in the class of barochronic 
motions, for c3 r 0 and a ~ 0, one can obtain c3 = t and a = 1 by dilatation transformation (u, x)  ~ a(u,  z) ,  



(v ,y ,  w, z) --. c3(v, y, w, z) [one can easily see that it is admitted both by the equations of barotropic gas 
motions and by the factor-system (3.2)]. The equivalent form of solution (3.3) for c3 # 0 and a r 0 is as 
follows: 

/3x ty + z - ( t cos O + sin @) t z  - y - ( t sin @ - cos @) 
U ~ - - -  - -  1 3 ~  W ~  , 

1 +/3t' t 2 + 1 ' t 2 + 1 

x P0 (3.4) 
(b = 1 +/3--------t' p = (t 2 + 1)(1 +/3 t ) '  S = const. 

4. P a r t i c l e  T r a j e c t o r i e s .  The particle trajectories in solution (3.4) are described by the formulas 

z = x 0 ( l + / 3 t ) ,  y = y o + t z o - t s i n x o ,  z = z o - t y o + t c o s x o .  (4.1) 

One can see that the particle trajectories are straight lines. In this case, the particle motion as a whole 
is nontrivial. Let, for example, for t = 0, the particles be on a straight line parallel to the X axis. From (4.1) 
it is obvious that at t > 0, they form a spiral with period 2r(1 +/3t)  and radius t. Remaining parallel to the 
X axis, the axis of the spiral sweeps out the plane. One of the peculiarities of the solution is that, if/3 < 0, at 
time t = -1/13 a collapse occurs: the spiral "sticks together" in a circle, while the density increases to infinity. 

5. C h a r a c t e r i s t i c  Cono id .  On solution (3.4), the sound characteristics of the gas dynamics equations 
are found in the form h(t ,  x) = const. The corresponding equations are as follows: 

h, + + + = + + (5.1) 

For Eqs. (5.1), in the case of characteristics C+, the equations of bicharacteristics have the form 

d x / d t  = u + c V h / I V h l ,  dhy/dt  = - u  I �9 V h  - cl lVhl  ( j  = t , z , y , z ) ,  (5.2) 
where c is the sound velocity, and the subscript j denotes the derivative with respect to the corresponding 
arguments. A characteristic "conoid is a geometrical place of all bicharacteristics (5.2) going out from the given 
point P(x0, to). 

We take the equation of stat~,qf a polytropic gas p = pv. For simplicity, we set c3 = 0 in solution (3.3). 
Then, the sound velocity c is c = x / ~  =:v/'7(1/[( t2 + 1)(1 +/3t)]) ('r-1)/2. 

Integration of system (5.2) yields the relations 

t 

f Q(t) at, x = xo +/3 txo  + (1 +/3t)  (1 + fit) 2 
0 

s ] Q(t) 
Y = Y o + - t y O r  + ( r + s t )  ~ d t ,  

0 

Q(t) dr, Q(t) + ) r . . t ' r  2 + s 2 I - i / 2  
z =  z o - - t z o + ( - r t  + ~ =c('t)L'~i (1+/302 

0 

(5.3) 

Equations (5.3) with r and s, which take on all real values, yield the parametric form of the 
characteristic conoid. 

6. T h e  Case  a 2 -k-/3 2 = 0. In this case, as was shown in See. 2, a nonsingular invariant H-solution 
cannot be constructed. Consider a partially invariant solution with respect to the subgroup H(0,0). The 
universal invariant of the group looks as follows: 

J = ( t , z , u ,U ,S ,p ) .  (6.1) 

Here the function U is determined from the relations 

U c o s O = v - ( t  v + z ) / ( ? + l ) ,  V s i n O = w - ( t z - y ) / ( t  2 + 1 ) .  (6.2) 

According to [3], the existence of a~ partially invariant H-solution of rank a < n requires that the inequalities 
1 ~< 6 ~< 2 hold for defect 6. Thus, there are two possibilities: a solution of defect 5 = 1 and rank a = 2 and 
also a solution of defect 5 = 2 and rank a = 3. Below, we study the first possibility. 

The solution is obtained if we seek m - 6 = 4 from invariants (6.1) as functions of the other two, 
i.e., the invariant functions u, U, p, and S depend in this solution only on t and x. Generally speaking, the 



remaining, "superfluous," function (I) depends on all independent variables (t, z, y, and z). 
Having preliminarily expressed v and w from (6.2), we substitute the solutions obtained for the unknown 

functions in (1.1). Using the auxiliary function h(t, x), we write the substitution results. The system splits 
into two subsystems: the invariant subsystem 

1 1_ 2t Uh = O, 
ut + uu~ + -p~ = O, (pt + up~ + pu~:) + t~ +-----~ 

P P 
Ut (6.3) 

St + uS~ = O, U~ + uU~ + - -  - O t 2 + 1  

and the additional subsystem for the "superfluous" function ~: 

( ( 1 ty + z )  r u + Usin(I) + ~z = 0, 
Ot+u(I)~:+ Ucos(I)+ t 2 + l ]  t 2 + 1 ]  t 2 + 1  

sin ~ (I)y - cos (I) (I)z - h = 0. (6.4) 

At this stage, the question of the existence of a required solution is reduced to studying the compatibility 
of the overdetermined system (6.4). 

P r o p o s i t i o n .  System (6.4) is compatible if and only if h(t, x) = O. In this case, the required partially 
invariant solution is reduced to invariant. 

To reduce system (6.4) to involution, it is convenient to find the dependence �9 = O(t, x, y, z) in implicit 
form: F(t,  x, y, z, ~) = 0. Then, Eqs. (6.4) are representable as the action of linear operators on F: 

( t y + z ~ (  t z - y ~  1 
121= Ot + uO~: + U cos ~ + t-~-~+ l / Oy + U sin ~ + t2 + l j OZ + t-~'~+ l Or 

122 = sin ~0 v - cos (~Oz + hO~. 

Thus, (6.4) is equivalent to the system 

121F = 0, 122F = 0. (6.5) 

Generally speaking, system (6.5) is active, i.e., it can produce new independent equations. For operators 121 
and 122, we form a commutator [121,122] = 121122 -122121. Denote 

1 r ,:o o ] ] [ 
123 = [12i, 122] + t-T-~--~+ 1122 = [ t2 + 1 + hU sin @ 0y + [ t2 + 1 hU cos @ Oz + ht + uhz + ~ 0~. 

Clearly, the function F should also be an invariant of the operator fl3. At the same time, the operator 12s 
is linearly independent (the linear combination can be taken with coefficients depending on all independent 
variables t, z, y, z, and <b) with the operators 121 and Ft2, since the consequence of the expression 123 = 
,\i121 + A2122 is a contradictory equality 2/(t  2 + 1) = 0. Thus, one should join the equation 123F = 0 to system 
(6.5). 

We calculate the operator 124 in a similar way: 

[ (  ) h 2sin ~ l  ht cos (I) - 0y 124 = [122,123] = h2U - ht - uh~ t 2 ~ 1 t-~+ l J 

+ h2U - ht - uhx t 2 + 1" sin r + h t2 q- 1 J 0z. 

For the linear dependence of 1-14 on 121,122, and 123, it is necessary that the equation 

t2 +------~ + h2U - ht - uh~ t2 + -~ = 0 

be satisfied for the function h, from which follows 

h(t, x) = O. (6.6) 

It is clear that otherwise, one can express the operator 0~, by 122,123, and 124 (by a linear combination 
of them), i.e., the equation Fo = 0 takes places, which implies the incompatibility of system (6.4). In the case 



(6.6), the expressions for operators fli (i = 1, 2, 3) are simplified: 

ty + z ^ tz - y 1 

f12 = sin �9 by - cos �9 Oz, ~3 = cos q~ 0 r + sin q~ Oz. 

One can easily verify that this system of operators is in involution. Turning back to the explicit 
definition of the function q~, we obtain the system of equations in involution which is equivalent to (6.4): 
ffgt Jr u ~ z  = 1/(t 2 Jr 1) and ~ = 0, ~z = 0. 

Note that the dependence of the "superfluous" function �9 only on the invariant variables t and x 
follows from the latter two equations. This indicates that the solution is actually reduced to invariant. Indeed, 
the desired solution is invariant with respect to the subgroup generated by the operators H1 and/-/2. 

For h = 0, factor-system (6.3) is simplified and, together with the equations for ~, takes the form 

u t + u u ~ + p x / p = O ,  p t + u p s + p ( u x + 2 t / ( t  2 + 1 ) ) = 0 ,  S t + u S ~ = O ,  
(6.7) 

u, + uu~ + u t / ( t  2 + 1) = o, r + ~,r = 1/(t  2 + 1), % = 0, ~ z  = 0, p = f (p ,  s ) .  

7. I n t e g r a t i o n  of  S y s t e m  (6.7). We replace the variables R = p(t 2 + 1) and write the first two 
equations of (6.7) as 

u, + ~,,,  + (t 2 + 1 )p , /R  = 0, R,  + ( ~ n ) ~  = 0. (7.1) 

The Lagrangian coordinate ~(t, x) is introduced by the relations R = ~z and Ru = -~t .  In view of 
these relations, the second equation of (7.1) holds automatically. The last equations of (6.7) are integrated: 
S = S(~), V = Uo(~)/V'~ + 1, and ~ = arctan t + ~0(~). Here S(~), U0(~), and ~0(~) are arbitrary functions 
of their argument. Calculating the derivatives and substituting them into the first equation of (7.1), we obtain 
the equation for the Lagrangian coordinate ~: 

3 t ~2~tt -- 2~t~x~tz Jr (~2 -- C2r J ,,z ~ z = (t 2 + 1)~xfsS (~), (7.2) 

where c 2 = fp(p, S) is the squared sound velocity. Thus, system (6.7) reduces to one quasi-linear differential 
equation in second-order partial derivatives (7.2). 

One can study factor-system (6.7) using the methods of group analysis of differential equations. We 
note that the first three equations of system (6.7) form an independent subsystem for the functions u, S, and p. 
Knowledge of these functions allows one to integrate easily the other equations. Moreover, in group analysis, it 
is more convenient to use (instead of the equation of entropy) the equation for pressure Dp+ A(p, p) div u = 0, 
where A(p, p) is a prescribed function of state [its physical meaning is A(p, p) = pc2]. It is clear that the 
function p will be an invariant of the H group, i.e., to construct the H-solution, one should assume that p 
depends on the invariant variables t and x. Below, we study the following system: 

u t + u u z + p x / p = O ,  p t + u p z + p ( u ~ + 2 t / ( t  2 + 1 ) ) = 0 ,  p t + u p x + A ( p , p ) ( u z + 2 t / ( t  2 + 1 ) ) = 0 .  (7.3) 

8. G r o u p  Class i f ica t ion .  For system (7.3), we solve the problem of group classification with respect 
to an "arbitrary element," the function A(p, p). The required operators are written in the form 

x = ~tOt + CO~ + ~"0,, + ~POp + CO,,. 

Verification of the known criterion from [5] shows that system (7.3) is x-autonomous for an arbitrary 
function A(p, p), i.e., the coordinates ~t and ~z can depend only on the variables t and x. With allowance for 
this fact, the system of governing equations is reduced to the following. The coordinate ~t is independent of z, 
i.e., it can depend only on t. For the coordinates ~u, ~p, and ~P, we have the expressions 

~" = ~t z - u ~  + u ~ ,  ~' = qo(t)p+ r  ~ = p(~o(t) + 2~ t - 2 ~ ) ,  (8.1) 

where ~(t) and r  are arbitrary functions of the variable t. The coordinates ~t and ~z should satisfy the 
relations 

2~t~ = ~t,  ~ = ~t = O, ~t + 3 ~  + 2t~tt/(t 2 + 1) + 2(1 - t 2) ~t/(t2 + 1) 2 = 0. (8.2) 



The latter equation is used to determine ~(t),  while the other yields the representation for ~t and ~z 

~" = cotx + clt + c2x + c3, ~t = cot2 + bit + b2 (8.3) 

with constants ci (i = 0 , . . . , 3 )  and bj (j = 1, 2). 
Classifying are the equations 

A~ = (VP + r  Ap + p(~ + 2(~ - 2 ~ )  Ap, KA(p ,p)  = Rp - Ct, 
(8.4) 

2t 2(i - t 2) 
K = G + + + 1)2 R = g + 2 G .  

In view of the dependence of K, R, and r only on t, from the second equation of (8.4) we obtain 

g A p  = O. (8.5) 

We consider the case K = 0. From (8.4) it follows that  Ct = 0, ~:, = 0, and 2t~t+(2(1-t2)/(t2+l))( t =0,  
whence follows that  co = 0 in (8.3). With allowance for (8.1)-(8.3), we obtain the constants ~ = W0 and r = r 
and also 

~t ---- 0, ~z = c l t  -4- C2X q- C3, ~,t = Cl -[- C2tt, ~P = r A- ~'0, ~P ---- p(~b0 -- 2C2). (8.6) 

We transform the first equation of (8.4): 

~po(pAp + pAp - A) + r - 2c2pAp = 0. (8.7) 

With arbitrary values of A, Ap, and A,,  Eq. (8.7) is valid only if ~0 = 0, r = 0, and c2 = 0, i.e., the 
kernel of the basic groups of Eqs. (7.3) is a two-parameter Lie group with operators 

X l  -- 0x, X2 -~-- tO,  --~ G~tt. (8.8) 

To perform the group classification, we found the group of equivalence transformations. Its factor- 
group with respect to kernel is generated with respect to the operators X~ = xO, + uOu - 2pOp, X~ = 0p, and 
X~ = pop + pop + AOA. Thus,  the equivalence transformations A(p, p) form a three-parameter  group acting 
in the formulas p' = ~3p -1- or2, pt ---- alO~3p, and A' = ot3A (hi axe arbitrary parameters,  with a l  > 0 and 
a3 > 0). 

Thus, for K = 0, the expression for the operator coordinates is given by formulas (8.6) with the only 
relation (8.7) relating the constants ~0, r  and c2. Equation (8.7) was analyzed using the same method as 
in [3]. As a result, we obtained all cases of dilatation of the kernel of the basic groups listed in Table 1, except 
the case Nos. 7 and 13. 

It remains to consider the second possibility offered by Eq. (8.5): Ap = O. Then,  from the second 
equation of (8.4), it follows (up to equivalence transformations) that  A = 7P, 7 = const, and 

1) t-T4Z+ I( 2t 2(1(t  (3' - 3) 4~:, + (7 - ~ + 1 7  ~tj ~ = 0, Ct = 0. (8.9) 

New dilatations of the kernel (8.8) can be obtained only for 3' = 1 and 5/3. In both cases, from the first 
equation of (8.4), r - 0. For 3' = 5/3, substituting (8.3) in (8.9), we find co = b2 and Cl = 0. Using (8.1) and 
(8.2), we obtain 

~t = c0(t 2 A- 1), (~ ---- cotx + clt -t- C2X A- c3, 

~ = = c o x + c l + u ( c 2 - c o t ) ,  ~ P = ( - 5 c o t + ~ 0 ) p ,  ~ P = p ( - 3 c o t - 2 c 2 + ~ 0 ) .  

The kernel of the basic groups dilates into three operators: II1, Y2, and 116- 
With 3' = 1, from (8.9) ~ = 0, i.e., co = 0 in (8.3). Integrating the last equation of (8.2), we find the 

expression ~(bl, b2) = -2b l t2 / ( t  2 + 1) - 2b2t/(t 2 + 1) + ~0 whose substitution in (8.1) yields ~t = bit + b2, 
~ = clt + c2x + c3, ~ = Cl - u(bl - c2), ~P = ~(bl, b2)p, and (P = p(T(bl, b2) + 2bl - 2c2) for the coordinates 
of the operator X. The kernel of basic groups dilates into four operators: Y1, II2, ]/4, and Yh. 



TABLE 1 

Number 
A 

of the kernel dilatation 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Y(p,p) 
pf(pp-'), 7 # o,1 

pf(p/p) 
f(p) 

vf(p) 
7p, 7 # o; 1; 5/3 

(5/s)p 
f (~-~)  

f(p) 
7P ~, 7 # 0.1 

P 
1 
P 
0 

2 
3 
3 
3 
3 
4 
5 
3 
3 
4 
4 
4 
6 

Or 

Y 

m 

(7 - 1)Y, + 27Y2 
Y2 
Y1 

YI + Y~ 
Y1, Y2 

Y1,Y2, Y6 
-Y1 + 2Y3 

Y3 
(7 - 1)Y1 + 27Y2, Ys 

Y2, Ys 
Y1, Ys 

Y~, Y2, Y4, Ys 
Y1, Y~ 

The results of group classification are presented in Table 1. One can find there the form of the function 
A(p, p) specifying the given dilatation of the kernel, the dimension of the admitted transformation group, and 
the operators dilating the kernel of the basic groups (8.8). The following operators are involved in dilatation 
of the kernel: 

Y1 = xOz + uO, - 2pOp, 

2t 2t 
Y4 = Ot t2 + l POp t 2 + 1  pop' Ys = tO* - uO, 

Y8 = (t 2 + 1)Or + txOz + (x -- ut)O,, -- 5tpOp -- 3tpOp, 

Here ~r is an arbitrary function. 

y2 = pOp + po., Y3 = Op, 

2t 2 2 
t2 + 1 pop + ~ po., 

r~ = p~' (p)O. + ~(p)Op. 

On the basis of this group classification, system (7.3) can be studied more completely with the use of 
the symmetry properties incorporated in these equations. 
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